#### 환경
Ubuntu 18.04
Nvidia GTX 1060 6G (Notebook)
#### 목표
Nvidia-driver-455
CUDA 11.0.2
CuDNN 8.0
Tensorflow 2.4.0
Pytorch 1.7.1
### Nvidia driver 삭제
sudo apt-get -y remove --purge nvidia*
sudo apt-get -y autoremove
sudo apt-get -y autoclean
### CUDA 삭제
sudo apt-get -y remove --purge cuda*
sudo rm -rf /usr/local/cuda*
### CuDNN 삭제
sudo apt-get -y remove --purge cudnn*
### Nvidia driver 설치
sudo apt-add-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-driver-[TAP]
sudo apt-get install nvidia-driver-455
sudo reboot
sudo apt-get install
### CUDA 다운받기
# developer.nvidia.com/cuda-toolkit-archive
sudo sh cuda_11.0.2_450.51.05_linux.run
# bashrc에 cuda path 잡아주기
export PATH=/usr/local/cuda-11.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64\${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
### CuDNN
# 가이드대로 docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
# developer.nvidia.com/rdp/cudnn-download
libcudnn8_8.0.5.39-1+cuda11.0_amd64.deb
libcudnn8-dev_8.0.5.39-1+cuda11.0_amd64.deb
libcudnn8-samples_8.0.5.39-1+cuda11.0_amd64.deb
### CuDNN Test
cp -r /usr/src/cudnn_samples_v8/ $HOME
cd $HOME/cudnn_samples_v8/mnistCUDNN
make clean && make
./mnistCUDNN
# 잘 깔렸으면 "Test passed!" 라는 메시지가 나온다.
### Docker
# Set up the repo
sudo apt-get update
sudo apt-get install -y apt-transport-https ca-certificates curl gnupg-agent software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo apt-key fingerprint 0EBFCD88
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
# Install Docker engine
sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli containerd.io
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update
sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi
하는중
# pytorch on conda
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch